Die Kristallstruktur des Chromarsenids Cr₄As₃

Von

H.-E. Baurecht, H. Boller und H. Nowotny Aus dem Institut für physikalische Chemie der Universität Wien

Mit 1 Abbildung

(Eingegangen am 12. August 1970)

Die Kristallstruktur von Cr_4As_3 wird aus Einkristallaufnahmen bestimmt:

Raumgr	uppe Cm-C _s 3
a =	$13,16_8$ Å
b =	$3,54_2~{ m \AA}$
c =	$9,30_2$ Å
$\beta =$	$102,19^{\circ}$

Cr₄As₃ kristallisiert in einem eigenen Typ, der sich von der MnP-Struktur ableitet.

The Crystal Structure of Cr₄As₃

The crystal structure of Cr_4As_3 has been determined by single crystal photographs:

space group Cm-Cs³ $a = 13.16_8 \text{ Å}$ $b = 3.54_2 \text{ Å}$ $c = 9.30_2 \text{ Å}$ $\beta = 102.1_9^\circ$

 Cr_4As_3 crystallizes with a novel structure type, which can be derived from the MnP-structure type.

Einleitung

Neben den gut charakterisierten Verbindungen Cr₂As (C 38- und C 22-Typ) und CrAs (B 31) im Zweistoff Chrom—Arsen wurde bereits früher¹ auf die Existenz einer Phase mit MnP-ähnlicher Struktur im Bereich von 40 At% As hingewiesen. Diese Befunde wurden später auch von anderen Autoren bestätigt²⁻⁵. Hinsichtlich der letztgenannten Ver-

¹ H. Nowotny und O. Arstad, Z. Physik. Chem. 38, 461 (1938).

² H. Haraldsen und E. Nygard, Z. Elektrochem. 45, 686 (1939).

³ M. Yuzuri, J. Physic. Soc. Japan 15, 2007 (1960).

⁴ L. Hollan, P. Lecocq und A. Michel, C. r. Sé. Acad. Sci. 260, 2233 (1965).

⁵ H. Wolfsgruber, H. Boller und H. Nowotny, Mh. Chem. 98, 2356 (1967).

H.-E. Baurecht u. a.: Die Kristallstruktur des Chromarsenids Cr₄As₃ 1697

bindung stellten *Hollan* et al.⁴ auf Grund spektrophotometrischer Analysen fest, daß die Zusammensetzung bei etwa 42 At% As liegt. Von *Yuzuri*⁴ wurde eine tetragonale Zelle (a = 7,05, c = 9,05 Å) vorgeschlagen; auch wurde erkannt³, ⁴, daß der in diesem System auftretende Ferromagnetismus der Phase um 40 At% As zukommt. Im Rahmen einer neuen Untersuchung des Systems Cr—As sowie Cr—As-haltiger Dreistoffe wurde die Kristallstruktur obiger Phase ermittelt.

Im Gebiet zwischen CrAs und der 40 At%-As-Phase treten noch andere Kristallarten auf⁵, die alle strukturell mit dem MnP-Typ zusammenhängen dürften. Während sich die 40 At%-As-Phase in Übereinstimmung mit den Beobachtungen der erwähnten Autoren nur oberhalb von 850° C bildet, findet man röntgenographisch bei entsprechenden Ansätzen und einer Reaktionstemperatur von etwa 700° C wieder nur ein MnP- oder NiAs-ähnliches Linienmuster. Sehr ausgeprägt ist dieses bei einer Probe mit 41 At% As. Ferner sei noch darauf hingewiesen, daß die 40 At%-As-Phase mit Cr₂As (Hoch- und Tieftemperaturmodifikation) vergesellschaftet vorkommt.

Experimenteller Teil

Eine Mischung von Chrom- und Arsenpulver im Verhältnis 60 zu 40 At% wurde in evakuierten Quarzröhrchen zur Reaktion gebracht und 48 Stdn. bei 1000° C getempert. Aus einer Probe (24 Stdn. bei 1250° C) konnte ein gut ausgebildeter, nadelförmiger Kristall isoliert und mit der [010]-Achse in einer Weißenberg-Kamera justiert werden. Die Intensitäten von *DK*- und Weißenbergaufnahmen (CuK-Strahlung) wurden visuell mit einer Eichskala geschätzt und die Absorption näherungsweise für ein zylindrisches Stäbchen ($\mu r = 4,5$) korrigiert.

Ergebnisse

Ungefähre Gitterkonstanten wurden den Weißenbergaufnahmen entnommen und mit Hilfe einer Diffraktometeraufnahme genau berechnet. Sie ergeben sich zu:

$$\begin{array}{rl} a = & 13,16_8 \text{ \AA} \\ b = & 3,54_2 \text{ \AA} \\ c = & 9,30_2 \text{ \AA} \\ \beta = & 102,1_9^{\circ} \end{array}$$

Die Weißenbergaufnahmen zeigen die Laue-Symmetrie C 2/m. Damit sind die Raumgruppen C 2, Cm und C 2/m möglich. Wegen der kurzen b-Achse und der identischen Intensitätsabfolge der (h0l)- und (h2l)-Reflexe scheidet die Raumgruppe C 2 aus. Mittels einer Pattersonsynthese wurde zunächst ein zentrosymmetrischer Strukturvorschlag für eine Zusammensetzung Cr₄As₃ in der Raumgruppe C 2/m entwickelt; dieser ließ sich jedoch durch Fourier-Synthesen nur schleppend bis zu einem *R*-Wert von 25% verfeinern. Eine geringfügig von der Zentrosymmetrie abweichende Anordnung konnte dagegen rasch bis zu einem *R*-Wert von 11% verfeinert werden. Danach sind in der Elementarzelle 16 Chromatome und 12 Arsenatome enthalten (Z = 4, $\rho_{Rontgen} = 6,778$ g/cm³). Diese Zusammensetzung steht mit dem Ergebnis von Hollan et al. im Einklang.

······ 8- 11								
		x Δ	$x \cdot 10^3$	y	$\Delta y \cdot 10^3$	z	$\Delta z \cdot 10^3$	В
2 Cr1	2 a)	0		0		0		0,490
2 Cr11	2 a)	0,162	2	0,5		0,444	3	0,873
2 CrIII	2 a)	0,144	2	0,5		-0,448	3	-0,602
$2 \operatorname{Cr_{IV}}$	2 a)	0,226	2	0	·	0,173	3	0,835
$2 \operatorname{Cr}_{\mathrm{V}}$	2 a)	0,214	2	0 -		-0,160	3	0,391
$2 \operatorname{Cr}_{VI}$	2 a)	0,437	2^{-1}	0		0,2825	2	0,253
2 CrvII	2 a)	0,4305	2	0		-0,286	2	1,238
2 CrvIII	2 a)	0,0045	2	0		0,4995	3	0,303
$2 \operatorname{As_{I}}$	2 a)	0,066	2	0	<u> </u>	0,2625	2	1,384
$2 \operatorname{As}_{\mathrm{II}}$	2 a)	0,063	2	0		-0,2755	2	0,033
2 AsIII	2 a)	0,3675	2	0		0,018	2	1,230
2 As_{IV}	2 a)	0,355	2	0		- 0,014	2	0,648
2 As_{V}	2 a)	0,3225	2	0,5	_	0,347	3	1,608
$2 \mathrm{Asy}_{\mathrm{I}}$	2 a)	0,310	2	0,5		-0,353	3	0,089

Tabelle 1. Atomparameter von Cr_4As_3 (Raumgruppe $Cm - C_s^3$)

 and and the second s		and the second second		· · · · · · · · · · · · · · · · · · ·	
 (hkl)	$\frac{\sin^2\theta \cdot 10^3}{\text{gem.}}$	$\sin^2\theta \cdot 10^3,$ ber.	$I_{\rm gesch.}$	Iber.	
(003)	64.8	64.7	20	25	
(402)	68.7	69.0	27	26	
(401)	72.7	72.7	2	4	
$(\overline{1}12)$	75.5	75.4	8	16	
(310)	79.4	79.7	6	16	
 $(\overline{3}11)$	80.1	80.4	36	51	
(112)	83.9	84.0	55	83	
(311)	93.0	93.3	4	6	
$(\overline{3}12)$	95.4	95.5	10	18	
$(\bar{4}03)$	96.0	96.4	18	14	
$(\bar{1}13)$	109.1	109.2	8	16	
(004)	114.8	115.0	š	15	
(312)	121.3	121.3	77	93	
$(\overline{3}13)$	124.9	125.0	10	15	
(600)	128.9	129,1	3	3	
$(\overline{6}02)$	131.9	132.2	60	61	
$(\overline{5}11)$	133.2	133.5	35	40	
(510)	136.7	137.0	29	38	
(204)	146.5	146.5	49	44	
(511)	154.5	155.0	22	25	
(313)	163.3	163.6	6		
$(\overline{3}14)$	169.0	168.9	100	100	
(512)	187.1	187.2	7	11	
 (020)	189.3	189.5	35	60	
(404)	207.0	206 7	5	7	
$(\overline{7}11)$	201,0	(215.3	0	(5	
(205)	216,0	1215,5	9		
 (200)		(992.9			
(809)	223,8	1994 0	16		
(802)j (315)	997 B	224,0			
(799)	221,0	(958 5	+		
(006)(258,6	1258.8	6		
(809)	202.0	200,6	7	15	
(802)	292,0	292,0	6	10	
(805)	3021,8	292 5	9 1	24 6	
(000)	326.2	323,5	14. 7	10	
(###) (516)	461 2	460.9	19	10	
(139))	401,0	400,2	14	(5	
(1119) (1119)	463,6	1462.6	7	{ 2	
(1112)	475 9	475 4	в	(ย 11	
(899)	489 1	489 1	6	19	
(044)	404,1	±04,1	U	. 14	

Tabelle 2. Auswertung einer Diffraktometeraufnahme der Phase Cr₄As₃ (CuK-Strahlung)

Die errechneten kristallographischen Daten von Cr_4As_3 , wie sie sich aus der Verfeinerung nach der Methode der kleinsten Quadrate ergeben, sind aus Tab. 1 ersichtlich.

(hkl)	$ F_{o} $	$ F_{\rm e} $	(hkl)	$ F_{0} $	$ F_{\rm e} $
(200)	25.7	20.8	(403)	170.7	164.1
(400)	64.7	54.3	$(\overline{2}03)$	55.5	34.8
(600)	89.5	98.3	(003)	160.4	173.1
(800)	94.6	88.0	(203)	70.9	71.9
(1000)	68.9	67.5	(403)	90.5	87.6
(1200)	40.1	42.4	(603)	111.0	91.1
(1400)	170.6	157.8	(803)	112.1	102.5
(1600)	96.6	93.7	(1003)	65.8	51.2
$(\overline{1601})$	28.8	34.3	(1203)	26.7	24.9
(1401)	87.3	79.3	(1200)	60.7	59.5
(1201)	157.3	184.1	$(\overline{16}04)$	38.0	41 7
(1001)	59.6	47.3	(1001)	123.4	140.6
$(\overline{801})$	67.9	76.4	(1201)	75 1	76.3
(801)	31.9.3	34 7	(1201)	97 7	115.2
$(\bar{4}01)$	48 3	53.0	(804)	41 1	42.0
(201)	22.6	13 7	$(\overline{6}04)$	42 1	41.6
(001)	29.8	25.0	(404)	80.5	01 Q
(201)	20,8	20,0	$(\overline{2}04)$	710	53.0
(201) (401)	771	68.9	(204)	175.8	101.0
(401)	90.4	799	(904)	240.2	274 6
(801)	161 4	161.6	(204)	150 /	176 0
(1001)	80.9	73 8	(404)	154	185
(1901)	44.9	16,5	(804)	15,4	10,0 07 A
(1201)	11,2	10.7	(1004)	95,0 97 A	91,± 76.6
(1401)	21.0	19,7	(1004)	07,4	- 70,0
(1001)	31,9	79.8	(1204)	20,7	49,0
(1002)	00,2	10,0	(1404)	104,4	141,1
(1402)	76.1	79.0	(005)	100,7	144,7
(1202)	25.0	10,0	(405)	94,0 91.0	00,1 95 6
(1002)		40,2	(205)	31,9	55,0 95,6
(804) (802)	216 7	199,0	(005)	100.0	20,0 100 6
$(\overline{0}02)$	169 5	413,0	(205)	154	199,0
(402)	102,5	199,5	(405)	50.6	10,0
(202)	20,7	20,0	(005)	69,0	55 6
(002)	10,5	10,1	(805)	194.77	55,0
(202)	20.9	04,8	(1005)	134,1	112,2
(402)	29,0 04 6	20,7	(1203)	10,1	11,1
(002)	94,0 997 0	220.8	(1400) (1906)	40,2	40,0
(802)	041,0 25.0	049,0 45 G	(1200)	22,0	1111
(1909)	69 7	±0,0 51 5	(1000)	24,0	111, 4 979
(1402)	50.6	51.9	(800)	04,1 151 9	170.0
(1 <u>4</u> 04) (1603)	111 A	110.7	(000)	169 /	1/0,9 1/0 9
(1003)	380	110,1	(±00) (706)	104,4 995 9	140,0
(1903)	14.4	107	(200)	440,4 125 7	440,0 1/1 2
(1003)	14,4	19.4	(000)	41 1	141,0 90.7
$(\overline{8})$	78 1	63.5	(406)	49.9	19,1 19 5
(603)	13 4	10.7	(808)	1110	102.5

Tabelle 3. Strukturamplituden für Cr₄As₃

(hkl)	$ F_{0} $	$ F_{ m c} $	(hkl)	$ F_{0} $	$ F_{c} $
(806)	145,0	132,5	(4011)	87,4	77,2
(1006)	76,1	67,4	$(\overline{2}011)$	56,5	61,9
(1206)	36,0	38,2	(0011)	122,4	148,8
1407)	178,9	209,9	(2011)	49,4	54, 5
1207)	12,3	14,9	(110)	49,3	52,4
1007)	73,0	88,6	(310)	113,1	110,1
807)	23,7	24,9	(510)	184,0	218,1
607)	98,7	83.7	(710)	175,8	177.7
407)	136,7	119,4	(910)	87,4	61.6
207)	21,6	26.9	(1110)	142.9	138.0
007)	137.8	141.5	(1310)	36.0	36.0
207)	114.1	118.0	(TII)	7.2	6.
407)	14.4	9.5	(111)	112.1	88.1
607)	98.7	83.7	(311)	97.7	76.8
807)	44.2	42.9	(511)	225.2	204.2
1007)	139.8	139.5	(711)	18.5	11.4
1408)	7.2	8.9	(911)	38.0	38.9
1208)	74.0	73.5	(1111)	69.9	69.2
1008)	14.4	26.9	(1311)	188.1	165.4
808)	39.1	51 2	(1511)	96.7	97.7
608)	149.1	159.9	(1112)	172.7	159
408)	21.6	28.6	$(\bar{9}12)$	75.1	84.8
208)	95.6	81.8	(712)	63.7	65.1
008)	78.1	76.2	(512)	65.8	62.5
208)	76.1	62.2	(312)	120.3	134.8
(408)	60.7	56 1	$(\bar{1}12)$	131.6	111.6
608)	104.9	76.4	(112)	232.4	260
(808)	80.3	68 7	(312)	298.2	200,0
1209)	36.0	35.3	(512)	159.4	155 (
1009	24 7	28.3	(712)	87.4	75 4
(1000) (2000)	64.8	20,0 44 3	(912)	103.8	92.0
(809) (809)	170.7	185 1	(1112)	94.6	82.6
(<u>7</u> 00)	14.4	26.0	(1312)	44.2	30.5
(209)	104.9	120,0	(013)	46.3	44 (
(009)	13.4	13.8	$(\overline{7}13)$	103.8	03 5
(209)	57.6	56 1	(713)	200,8	96 d
2097	175.8	159.4	(910)	126 5	138 (
(±03) (600)	108.0	105 5	(113)	199 /	120,0
(809)	81.2	83.0	(113)	122,4	102,0
(10010)	31.0	24.1	(212)	112 1	110.7
(\$010)	106.9	07.0	(513)	140.0	196 /
(8010) (8010)	35.0	35.6	(713)	68.0	50.5
(4010)	23 7	25.0	(012)	162 5	14.9 (
$(\overline{2010})$	23.6	38 S	(1114)	50 4	140,3 66 ¹
(0010)	58 G	190,0 195	(1114)	88.4	00, 06 (
(2010)	152.2	140.2	(714)	37 0	31 4
4010)	26 7	35.3	(514)	43.9	26 /
(8011)	87 4	20,0	(314)	т э,4 384 к	498 9
(0011)	01,±		(014)	004,0	±40,4

H. 6/1970] Die Kristallstruktur des Chromarsenids Cr₄As₃ 1701

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(hkl)	F ₀	$ F_{ m c} $	(hkl)	$ F_{o} $	<i>F</i> _c
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(114)	20,6	19,2	(717)	29,8	31,2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(314)	72,0	66,0	(917)	26,7	29,4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(914)	34,0	27,3	(1318)	57,6	55,4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1114)	158,3	146,0	(1118)	25,7	21,7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1314)	101,8	93,9	(918)	85,3	89,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1515)	123,4	136,4	(718)	78,1	78,1
	(915)	64,8	69,2	(518)	50,4	53,9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(\bar{5}15)$	74,0	75,5	(318)	101,8	108,3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(315)	174,8	158,8	(118)	202,6	249,1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(115)	122,3	95,6	(118)	97,7	94,8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(315)	52,4	48,9	(318)	31,8	23,7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(715)	161,4	141,7	(718)	63,7	50,6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(915)	120,3	100,1	(1119)	76,1	76,7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1115)	61,7	60,8	(919)	57,6	57,8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1516)	43,2	43,7	(719)	68,9	76,1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1316)	24,7	22,0	(519)	38,0	36,2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1116)	127,5	124,7	(319)	76,1	90,3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(916)	172,7	209,3	(119)	63,8	63,7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(716)	64,8	66,1	(119)	43,2	43,5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(316)	65,8	68,2	(319)	26,7	31,4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(116)	26,7	30,6	(519)	30,8	20,8
	(316)	27,8	22,8	(11110)	58,6	58,2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(516)	291,0	279,4	(9110)	128,5	111,3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(716)	65,8	54,7	(7110)	77,1	75,2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(916)	76,1	63,8	$(\overline{5}110)$	85,3	108,3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1116)	52, 4	54,3	(1110)	54,5	55,1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1117)	40,1	42,2	(3110)	79,2	91,0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(917)	95,6	103,7	(5110)	74,0	86,9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(717)	120,3	148,4	(7111)	61,7	44,3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(317)	87,4	76,7	(5111)	51,4	52,4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(117)	64,8	71,3	(3111)	61,7	61,2
(317) 172,7 170,5 (1111) 41,1 53,6	(117)	86,4	76,8	(1111)	50,4	69,7
	(317)	172,7	170,5	(1111)	41,1	53, 6

Fortsetzung (Tabelle 3)

Als weitere Beweise für die ermittelten Atomparameter sind in Tab. 2 die Auswertung einer Diffraktometeraufnahme (zur Identifizierung) und in Tab. 3 die berechneten und beobachteten Strukturamplituden wiedergegeben. Die interatomaren Abstände gehen aus Tab. 4 hervor.

Diskussion der Ergebnisse

Die Kristallstruktur von Cr₄As₃ kann durch gegeneinander versetzte Blöcke mit MnP-artiger Anordnung beschrieben werden; die Blöcke durchziehen bandförmig den Kristall (Abb. 1). Dazwischen schiebt sich als zweites Bauelement ein innenzentrierter Chromwürfel, der von vier Arsenatomen seitlich koordiniert ist. Eine solche Baugruppe wird in

			and the second se		
$Cr_1 - Cr_{1V}$	$3,06_{7}$		Cr_{IV} — As_{I}	$2,41_{9}$	
$Cr_I - Cr_V$	$2,89_{3}$		Cr_{IV} — As_{III}	$2,58_{6}$	
$Cr_I - As_I$	$2,41_{3}$		Cr_{IV} — As_{IV}	$2,55_{0}$	(2×1)
$Cr_I - As_{II}$	$2,52_{1}$		Cr_{IV} — As_{VI}	2,554	$(2 \times)$
Cr _I —As _{III}	$2,51_{6}$	$(2 \times)$	Cr_V — Cr_{VII}	$2,84_{7}$	
$Cr_I - As_{IV}$	$2,63_{1}$	$(2\times)$	$Cr_V - As_{II}$	$2,45_{2}$	
CrII-CrIII	3,099	$(2 \times)$	$Cr_V - As_{III}$	$2,50_{5}$	$(2 \times)$
Cr_{II} — Cr_{IV}	$3,33_{5}$	$(2\times)$	$Cr_V - As_{IV}$	$2,51_{9}$	
CrII-CrVI	$3,02_{8}$		Crv - Asvi	$2,64_{6}$	$(2 \times)$
CrII-CrVII	3,009		Crvi-Crviii	$2,69_{2}$	$(2\times)$
Cr _{II} —Cr _{VIII}	$2,85_{4}$	$(2 \times)$	Cr_{VI} — As_{I}	$2,49_{2}$	$(2\times)$
Cr _{II} —As _I	$2,58_{5}$	$(2\times)$	Cr_{VI} — As_{III}	$2,43_{7}$	
Cr_{II} — As_V	$2,46_{9}$		Cr_{VI} — As_V	$2,47_{9}$	(2 imes)
CrII-Asvi	$2,55_{7}$	(2 imes)	CrvII-CrvIII	$2,66_{8}$	$(2\times)$
CrIII-CrVI	$2,92_{3}$		Cr_{VII} — As_{II}	$2,50_{1}$	$(2\times)$
Crin-Crvn	$2,89_{2}$		CrvII-AsIV	$2,51_{7}$. ,
Critt-Crvitt	2.75_{6}		CrvII-AsvI	$2,54_{1}$	$(2 \times)$
CrIII—AsII	$2,47_{4}$	$(2 \times)$	CrvIII-Asi	$2,50_{6}$. ,
Crm—Asy	$2,57_{1}$	$(2 \times)$	CrvIII—AsII	$2,43_{8}$	
CrIII-Asvi	$2,52_{7}$	· · ·	Cr_{VIII} — As_V	$2,51_{2}$	
Cr_{IV} — Cr_{VI}	$2,75_{0}$		Cr_{VIII} — As_{VI}	$2,53_{6}$	

Tabelle 4. Interatomare Abstände im Cr₄As₃ (in Å)

zahlreichen Übergangsmetall-pniktiden, z. B. solchen mit Ti $_5$ Te $_4$ -Typ⁶, beobachtet.

Der Cr₄As₃-Typ schließt somit an die Bauprinzipien der bisher bekannten Übergangsmetallpniktide an. Demnach wird bei zunehmendem T-Metallgehalt die trigonal-prismatische Umgebung des B-Elements erweitert. Auf diese Weise entstehen im allgemeinen durch ein bis drei Atome erweiterte trigonale Prismen und ein rz. Übergangsmetallwürfel, der bereits zur Anordnung der Elementstruktur überleitet. Die Koordinationszahl des Arsens in der vorliegenden Struktur ist 6 (As_{III}, As_{IV}), 7 (As_I, As_{II}) und 8 (As_V, As_{VI}), die des Chroms 8 (Cr_I, Cr_{IV}, Cr_V), 10 (Cr_{VI}, Cr_{VII}), 11 (Cr_{II}, Cr_{III}) und 12 (Cr_{VIII}). Im allgemeinen steigen mit zunehmendem T-Metallgehalt die Koordinationszahlen an, was einen Übergang zu einer dichteren Packung anzeigt.

⁶ F. Gronvold, A. Kjekshus und F. Raaum, Acta Cryst. 14, 930 (1961).

Monatshefte für Chemie, Bd. 101/6